Protein kinase C-theta (PKC-theta) plays important roles in the activation and survival of lymphocytes and is the predominant PKC isoform expressed in T-cells. Interferons regulate T-cell function and activation, but the precise signaling mechanisms by which they mediate such effects have not been elucidated. We determined whether PKC-theta is engaged in interferon (INF) signaling in T-cells. Both Type I (alpha, beta) and Type II (gamma) IFNs induced phosphorylation of PKC-theta in human T-cell lines and primary human T-lymphocytes. Such phosphorylation of PKC-theta resulted in activation of its kinase domain, suggesting that this kinase plays a functional role in interferon signaling. Consistent with this, inhibition of PKC-theta protein expression using small interfering RNAs (siRNA) abrogated IFN-alpha- and IFN-gamma-dependent gene transcription via GAS elements. Similarly, blocking of PKC-theta kinase activity by overexpression of a dominant-negative PKC-theta mutant also blocked GAS-driven transcription, further demonstrating a requirement for PKC-theta in IFN-dependent transcriptional activation. The effects of PKC-theta on IFN-dependent gene transcription were not mediated by regulation of the IFN-activated STAT pathway, as siRNA-mediated PKC-theta knockdown had no effects on STAT1 phosphorylation and binding of STAT1-containing complexes to SIE/GAS elements. On the other hand, siRNA-mediated PKC-theta inhibition blocked phosphorylation/activation of MKK4, suggesting that interferon-dependent PKC-theta activation regulates downstream engagement of MAP kinase pathways. Altogether, these findings demonstrate that PKC-theta is an interferon-inducible kinase and strongly suggest that it plays an important role in the generation of interferon-responses in T-cells.