Microsomal preparations of cat brain incubated with [14C]arachidonic acid produced epoxyeicosatrienoic acids (EETs) that eluted with the same retention times as synthetically prepared 5,6-, 8,9-, and 11,12-EETs. These compounds dilated serotonin-preconstricted, pressurized cat cerebral arteries in a dose-dependent fashion. Epoxide formation was not found in mitochondrial fractions and was dependent on the presence of NADPH. The maximum effects of 8,9-EET and 11,12-EET were greater than those of 5,6-EET. The cellular basis of this vasodilation was further investigated by examining the effects of 8,9-EET and 11,12-EET on K+ channel activity in vascular muscle cells freshly isolated from cat cerebral arteries. Both 8,9-EET and 11,12-EET increased the frequency of opening, mean open time, and open-state probability of a 98-pS K+ channel recorded in the cell-attached mode with 145 mM KCl in the pipette and 4.7 mM KCl in the bath. Blockade of K+ channel activity with tetraethylammonium attenuated the vasodilatory effects of 11,12-EET on serotonin-preconstricted cat cerebral arteries. These results suggest that endogenously formed EETs may participate in local regulation of cerebral blood flow by dilating cerebral arteries through a mechanism that involves activation of K+ channels.