Rationale and objectives: To compare 1.0 M gadobutrol and 0.5 M Gd-DTPA for contrast-enhanced three-dimensional pulmonary perfusion magnetic resonance imaging (3D MRI).
Materials and methods: Ten healthy volunteers (3 females; 7 males; median age, 27 years; age range, 18-31 years) were examined with contrast-enhanced dynamic 3D MRI with parallel acquisition technique (FLASH 3D; reconstruction algorithm: generalized autocalibrating partially parallel acquisitions; acceleration factor: 2; TE/TR/alpha: 0.8/1.9 milliseconds/40 degrees; FOV: 500 x 375 mm; matrix: 256 x 86; slab thickness: 180 mm; 36 partitions; voxel size: 4.4 x 2 x 5 mm; TA: 1.48 seconds). Twenty-five consecutive data sets were acquired after intravenous injection of 0.025, 0.05, and 0.1 mmol/kg body weight of gadobutrol and Gd-DTPA. Quantitative measurements of peak signal-to-noise ratios (SNR) of both lungs were performed independently by 3 readers. Bolus transit times through the lungs were assessed from signal intensity time curves.
Results: The peak SNR in the lungs was comparable between gadobutrol and Gd-DTPA at all dose levels (15.7 vs. 15.5 at 0.1 mmol/kg bw; 12.9 vs. 12.5 at 0.05 mmol/kg bw; 7.6 vs. 8.9 at 0.025 mmol/kg bw). A dose of 0.1 mmol/kg achieved the highest peak SNR compared with all other dose levels (P < 0.05). A higher peak SNR was observed in gravity dependent lung (P < 0.05). Despite different injection volumes, transit times of the contrast bolus did not differ between both agents.
Conclusion: Higher concentrated gadolinium chelates offer no advantage over standard 0.5 M Gd-DTPA for contrast-enhanced 3D MRI of lung perfusion.