A panel of 54 mouse/human somatic cell hybrids, each possessing various portions of chromosome 16, was constructed; 46 were constructed from naturally occurring rearrangements of this chromosome, which were ascertained in clinical cytogenetics laboratories, and a further 8 from rearrangements spontaneously arising during tissue culture. By mapping 235 DNA markers to this panel of hybrids, and in relation to four fragile sites and the centromere, a cytogenetic-based physical map of chromosome 16 with an average resolution of 1.6 Mb was generated. Included are 66 DNA markers that have been typed in the CEPH pedigrees, and these will allow the construction of a detailed correlation of the cytogenetic-based physical map and the genetic map of this chromosome. Cosmids from chromosome 16 that have been assembled into contigs by use of repetitive sequence fingerprinting have been mapped to the hybrid panel. Approximately 11% of the euchromatin is now both represented in such contigs and located on the cytogenetic-based physical map. This high-resolution cytogenetic-based physical map of chromosome 16 will provide the basis for the cloning of genetically mapped disease genes, genes disrupted in cytogenetic rearrangements that have produced abnormal phenotypes, and cancer breakpoints.