Recently, overlapping molecular phenotypes of hematopoietic and neuropoietic cells were described in mice. Here, we examined primary human CD34(+) hematopoietic stem and progenitor cells applying specialized cDNA arrays, real-time reverse-transcriptase-polymerase chain reaction (RT-PCR), and fluorescent-activated cell sorter (FACS) analysis focusing on genes involved in neurobiologic functions. We found expression of vesicle fusion and motility genes, ligand- and voltage-gated ion channels, receptor kinases and phosphatases, and, most interestingly, mRNA as well as protein expression of G protein-coupled receptors of neuromediators (corticotropin-releasing hormone 1 [CRH 1] and CRH 2 receptors, orexin/hypocretin 1 and 2 receptors, GABAB receptor, adenosine A(2)B receptor, opioid kappa 1 and mu 1 receptors, and 5-HT 1F receptor). As shown by 2-color immunofluorescence, the protein expression of these receptors was higher in the more immature CD38(dim) than in the CD38(bright) subset within the CD34(+) population, and completely absent in fully differentiated blood cells, suggesting that those receptors play a role in developmentally early CD34(+) stem and progenitor cells. The intracellular concentration of cyclic adenosine monophosphate (cAMP) in CD34(+) cells was diminished significantly upon stimulation of either CRH or orexin receptors, indicating that those are functionally active and coupled to inhibitory G proteins in human hematopoietic cells. In conclusion, these findings suggest a molecular interrelation of neuronal and hematopoietic signaling mechanisms in humans.