To elucidate the domains on the extrinsic 23 kDa protein involved in electrostatic interaction with the extrinsic 33 kDa protein in spinach photosystem II, we modified amino or carboxyl groups of the 23 kDa protein to uncharged methyl ester groups with N-succinimidyl propionate or glycine methyl ester in the presence of a water-soluble carbodiimide, respectively. The N-succinimidyl propionate-modified 23 kDa protein did not bind to the 33 kDa protein associated with PSII membranes, whereas the glycine methyl ester-modified 23 kDa protein completely bound. This indicates that positive charges on the 23 kDa protein are important for electrostatic interaction with the 33 kDa protein associated with the PSII membranes. Mapping of the N-succinimidyl propionate-modified sites of the 23 kDa protein was performed using Staphylococcus V8 protease digestion of the modified protein followed by determination of the mass of the resultant peptide fragments with MALDI-TOF MS. The results showed that six domains (Lys11-Lys14, Lys27-Lys38, Lys40, Lys90-Lys96, Lys143-Lys152, Lys166-Lys174) were modified with N-succinimidyl propionate. In these domains, Lys11, Lys13, Lys33, Lys38, Lys143, Lys166, Lys170 and Lys174 were wholly conserved in the 23 kDa protein from 12 species of higher plants. These positively charged lysyl residues on the 23 kDa protein may be involved in electrostatic interactions with the negatively charged carboxyl groups on the 33 kDa protein, the latter has been suggested to be important for the 23 kDa binding [Bricker, T.M. & Frankel, L.K. (2003) Biochemistry42, 2056-2061].