MYC is amplified in BRCA1-associated breast cancers

Clin Cancer Res. 2004 Jan 15;10(2):499-507. doi: 10.1158/1078-0432.ccr-0976-03.

Abstract

Purpose: Germ-line mutations in the BRCA1 tumor suppressor gene predispose to early onset breast cancers with a distinct phenotype characterized by high tumor grade, aneuploidy, high proliferation rate, and estrogen receptor-negativity. The molecular mechanisms and cooperative oncogenes contributing to multistep tumor progression in cells lacking BRCA1 are not well defined. To examine whether C-MYC (MYC), a transforming oncogene associated with genetic instability, contributes to multistep tumor progression in BRCA1-associated breast cancer, we have analyzed tumors from women with hereditary BRCA1-mutated and sporadic breast cancers.

Experimental design: We performed fluorescence in situ hybridization using a MYC:CEP8 assay on formalin-fixed paraffin-embedded tumor tissues from 40 women with known deleterious germ-line BRCA1 mutations and 62 sporadic cases, including 20 cases with hypermethylation of the BRCA1 gene promoter.

Results: We observed a MYC:CEP8 amplification ratio >/=2 in 21 of 40 (53%) BRCA1-mutated tumors compared with 14 of 62 (23%) sporadic tumors (P = 0.003). Of the 14 sporadic cases with MYC amplification, 8 (57%) were BRCA1-methylated. In total, MYC amplification was found in a significantly higher proportion of tumors with BRCA1 dysfunction (29 of 60, 48% versus 6 of 42, 14%; P = 0.0003). In a multivariable regression model controlling for age, tumor size, and estrogen receptor status, BRCA1-mutated tumors demonstrated significantly greater mean MYC:CEP8 ratio than sporadic tumors (P = 0.02).

Conclusions: Our data indicate that MYC oncogene amplification contributes to tumor progression in BRCA1-associated breast cancers. Thus, we conclude that the aggressive histopathological features of BRCA1-associated tumors are in part due to dysregulated MYC activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Alleles
  • Breast Neoplasms / genetics*
  • Cell Division
  • DNA Methylation
  • Disease Progression
  • Genes, BRCA1*
  • Genotype
  • Germ-Line Mutation*
  • Humans
  • In Situ Hybridization, Fluorescence
  • Middle Aged
  • Multivariate Analysis
  • Mutation
  • Phenotype
  • Promoter Regions, Genetic
  • Proto-Oncogene Proteins c-myc / metabolism*

Substances

  • Proto-Oncogene Proteins c-myc