Rieger syndrome is one of the most serious causes of tooth agenesis. Mutations in the PITX2, FOXC1, and PAX6 genes have been associated with Rieger syndrome. We have studied a three-generation Chinese family affected with Rieger syndrome and showing prominent dental abnormalities. Mutational screening and sequence analysis of the PITX2 gene revealed a previously unidentified four-base-pair deletion of nucleotides 717-720 in exon 5 in all affected members. The mutation causes a frame shift after Thr44, the 7th amino acid of the homeo-domain, and introduces a premature stop codon in the gene sequence. This deletion is the first unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that the oligodontia and other phenotypes of Rieger syndrome observed in this family are due to this PITX2 mutation, and these data further support the critical role of PIXT2 in tooth morphogenesis.