AML1/Runx1, originally identified as a gene located at the breakpoint of the t(8;21) translocation, encodes one of the two subunits forming a heterodimeric transcription factor. AML1 contains a highly evolutionally conserved domain called the Runt domain, responsible for both DNA binding and heterodimerization with the partner protein, CBFbeta. AML1 is widely expressed in all hematopoietic lineages, and regulates the expression of a variety of hematopoietic genes. Numerous studies have shown that AML is a critical regulator of hematopoietic development. In addition, AML1 and CBFbeta are frequent targets for chromosomal translocation in human leukemia. Translocations lead to the generation of fusion proteins, which play a causative role for the development of leukemia, primarily by inhibiting AML1 function. Point mutations that impair AML1 function are also associated with familial and sporadic leukemias. Loss of AML1 function is thus implicated in a number of leukemias through multiple pathogenic mechanisms. However, AML1-related translocations or haploinsufficiency of AML1 are not immediately leukemogenic in animal models, suggesting that additional genetic events are required for the development of full-blown leukemia.