Probe selection for high-density oligonucleotide arrays

Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11237-42. doi: 10.1073/pnas.1534744100. Epub 2003 Sep 19.

Abstract

High-density oligonucleotide microarrays enable simultaneous monitoring of expression levels of tens of thousands of transcripts. For accurate detection and quantitation of transcripts in the presence of cellular mRNA, it is essential to design microarrays whose oligonucleotide probes produce hybridization intensities that accurately reflect the concentration of original mRNA. We present a model-based approach that predicts optimal probes by using sequence and empirical information. We constructed a thermodynamic model for hybridization behavior and determined the influence of empirical factors on the effective fitting parameters. We designed Affymetrix GeneChip probe arrays that contained all 25-mer probes for hundreds of human and yeast transcripts and collected data over a 4,000-fold concentration range. Multiple linear regression models were built to predict hybridization intensities of each probe at given target concentrations, and each intensity profile is summarized by a probe response metric. We selected probe sets to represent each transcript that were optimized with respect to responsiveness, independence (degree to which probe sequences are nonoverlapping), and uniqueness (lack of similarity to sequences in the expressed genomic background). We show that this approach is capable of selecting probes with high sensitivity and specificity for high-density oligonucleotide arrays.

MeSH terms

  • Cell Line
  • Humans
  • Models, Molecular
  • Oligonucleotide Array Sequence Analysis*
  • Open Reading Frames
  • RNA Probes*

Substances

  • RNA Probes