Striking numerical and structural chromosome abnormalities (-Y, +8, i(7q), del (10)(q24), and del (11)(q21)) were detected by cytogenetic analysis in a patient's bone marrow with morphological features of both acute lymphoblastic leukemia and myelodysplastic disorder. Surface marker analysis characterized blast cells to be CD2+ CD7+ CD3+ CD4- CD8- expressing gamma/delta-T-cell receptor antigen and coexpressing CD11b and CD16. Exhibiting an identical phenotype as the leukemic cells, a prominent gamma/delta-TCR+ lymphocyte population was found in the bone marrow as well as in the peripheral blood. Cells of the latter compartment coexpressed CD56 and HLA-DR antigens and exhibited nonspecific cytotoxic activity. In the bone marrow cells NSCA could be induced after stimulation with interleukin 2 in vitro. Morphological, immunological, and cytogenetic findings suggest that gamma/delta-T-ALL emerged from a myelodysplastic disorder after sequential steps of malignant transformation. Leukemic cells with "mixed lineage" character may provide evidence for a common progenitor cell in the bone marrow. Assuming that the leukemic cells represent the malignant counterpart of normal CD3+ gamma/delta-TCR+ cells the results may contribute to our understanding of the origin and differentiation as well as the possible steps of malignant transformation of a gamma/delta-TCR+ lymphocyte population.