Pyramidal neurons in layer 2/3 of the neocortex are central to cortical circuitry, but the intrinsic properties of their dendrites are poorly understood. Here we study layer 2/3 apical dendrites in parallel experiments in acute brain slices and in anesthetized rats using whole-cell recordings and Ca2+ imaging. We find that backpropagation of action potentials into the dendritic arbor is actively supported by Na+ channels both in vitro and in vivo. Single action potentials evoke substantial Ca2+ influx in the apical trunk but little or none in the dendritic tuft. Supralinear Ca2+ influx is produced in the tuft, however, when an action potential is paired with synaptic input. This dendritic supralinearity enables layer 2/3 neurons to integrate ascending sensory input from layer 4 and associative input to layer 1.