Tissue-type plasminogen activator (t-PA) reacts upon exposure to endothelium-derived relaxing factor (EDRF) by way of the enzyme's single free sulfhydryl (Cys-83) to form a stable S-nitrosothiol protein adduct. S-nitrosylation endows t-PA with potent vasodilatory and antiplatelet properties that are accompanied by elevations in intracellular cyclic GMP analogous to those induced by low molecular weight (e.g., S-nitroso amino acid) S-nitrosothiols. Moreover, this chemical modification does not adversely affect the catalytic efficiency of t-PA, the fibrin stimulation of this activity, the binding of t-PA to fibrinogen, or the interaction of the enzyme with its physiologic serine protease inhibitor, plasminogen-activator inhibitor type I. The coupling of vasodilatory, antiplatelet, and fibrinolytic properties in one molecule makes the S-nitrosylated t-PA a unique molecular species and may provide insight into the mechanisms by which the endothelium maintains vessel patency. These data also suggest a pharmacologic approach to treatment of thromboocclusive disorders.