14,15-epoxyeicosa-5(Z)-enoic-mSI: a 14,15- and 5,6-EET antagonist in bovine coronary arteries

Hypertension. 2003 Oct;42(4):555-61. doi: 10.1161/01.HYP.0000091265.94045.C7. Epub 2003 Sep 2.

Abstract

Endothelium-dependent hyperpolarizations and relaxation of vascular smooth muscle induced by acetylcholine and bradykinin are mediated by endothelium-derived hyperpolarizing factors (EDHFs). In bovine coronary arteries, arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), function as EDHFs. The 14,15-EET analog 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide (14,15-EEZE-mSI) was synthesized and tested for agonist and antagonist activity. In U46619-preconstricted bovine coronary arterial rings, 14,15-, 11,12-, 8,9-, and 5,6-EET induced maximal concentration-related relaxation averaging 75% to 87% at 10 micromol/L, whereas, 14,15-EEZE-mSI induced maximal relaxation averaging only 7%. 14,15-EEZE-mSI (10 micromol/L) preincubation inhibited relaxation to 14,15- and 5,6- EET but not 11,12- or 8,9- EET. 14,15-EEZE-mSI also inhibited indomethacin-resistant relaxation to arachidonic acid and indomethacin-resistant and l-nitroarginine-resistant relaxation to bradykinin and methacholine. It did not alter the relaxation to sodium nitroprusside, iloprost, or the K+ channel openers bimakalim or NS1619. In cell-attached patches of isolated bovine coronary arterial smooth muscle cells, 14,15-EEZE-mSI (100 nmol/L) blocked the 14,15-EET-induced (100 nmol/L) activation of large-conductance, calcium-activated K+ channels. Mass spectrometric analysis of rat renal cortical microsomes incubated with arachidonic acid showed that 14,15-EEZE-mSI (10 micromol/L) increased EET concentrations while decreasing the concentrations of the corresponding dihydroxyeicosatrienoic acids. Therefore, 14,15-EEZE-mSI inhibits relaxation to 5,6- and 14,15- EET and the K+ channel activation by 14,15-EET. It also inhibits the EDHF component of bradykinin-induced, methacholine-induced, and arachidonic acid-induced relaxation. These results suggest that 14,15- or 5,6 -EET act as an EDHF in bovine coronary arteries.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 8,11,14-Eicosatrienoic Acid / analogs & derivatives*
  • 8,11,14-Eicosatrienoic Acid / antagonists & inhibitors*
  • 8,11,14-Eicosatrienoic Acid / chemistry
  • 8,11,14-Eicosatrienoic Acid / pharmacology*
  • Animals
  • Arachidonic Acid / metabolism
  • Cattle
  • Coronary Vessels / drug effects
  • Coronary Vessels / physiology*
  • Culture Techniques
  • Patch-Clamp Techniques
  • Potassium Channels, Calcium-Activated / metabolism
  • Rats
  • Sulfonamides / chemistry
  • Sulfonamides / pharmacology*
  • Vasodilator Agents / antagonists & inhibitors*

Substances

  • 14,14-epoxyeicosa-5-enoic methylsulfonylimide
  • Potassium Channels, Calcium-Activated
  • Sulfonamides
  • Vasodilator Agents
  • Arachidonic Acid
  • 5,6-epoxy-8,11,14-eicosatrienoic acid
  • 14,15-epoxy-5,8,11-eicosatrienoic acid
  • 8,11,14-Eicosatrienoic Acid