Objectives: The use of recombinant adenoviruses in cancer gene therapy is limited by the widespread expression of the coxsackievirus and adenovirus receptor on normal human cells. Targeting adenoviral vectors to renal cell carcinoma (RCC) cells may improve their potential in cancer gene therapy of patients with metastatic RCC. The G250 protein, also known as the carbonic anhydrase IX protein, is membranously expressed in all cases of clear cell RCC, and clinical studies have demonstrated exceptional tumor targeting with a G250 monoclonal antibody.
Methods: A recombinant bispecific single-chain antibody directed against the RCC-associated G250 protein and the adenovirus fiber knob domain was constructed and used to retarget recombinant adenovirus expressing the green fluorescent protein under control of the cytomegalovirus promoter. G250-specific adenoviral transduction of cells was examined by flow cytometric analysis of green fluorescent protein expression.
Results: G250-positive RCC cells displayed enhanced susceptibility for transduction by the green fluorescent protein recombinant adenovirus complexed with the G250-directed bispecific single-chain antibody when compared with native adenovirus. This enhanced transduction was restricted to G250-positive RCC cells and could be abolished completely in the presence of excess G250 protein.
Conclusions: The results of this study demonstrate the feasibility of immunologic retargeting of adenovirus to RCC cells with the highly tumor-specific G250 protein as the target. This strategy may provide the possibility of improving cancer gene therapy for patients with RCC.