Src tyrosine kinase is a therapeutic target for bone diseases that has been validated by gene knockout studies. Furthermore, in vitro cellular studies implicate that Src has a positive regulatory role in osteoclasts and a negative regulatory role in osteoblasts. The potential use of Src inhibitors for osteoporosis therapy has been previously shown by novel bone-targeted ligands of the Src SH2 (e.g., AP22408) and non-bone-targeted, ATP-based inhibitors of Src kinase. Significant to this study, compounds 2-12 exemplify novel analogues of known pyrrolopyrimidine and pyrazolopyrimidine template-based Src kinase inhibitors that incorporate bone-targeting group modifications designed to provide tissue (bone) selectivity and diminished side effects. Accordingly, we report here the structure-based design, synthetic chemistry and biological testing of these compounds and proof-of-concept studies thereof.