A hematopoietic cell transplantation (HCT) approach was developed for elderly or ill patients with hematologic malignancies that employed nonmyeloablative conditioning to avoid common regimen-related toxicities and relied on graft-versus-tumor effects for control of malignancy. Eighty-nine patients, median age 53 years, were given fludarabine (90 mg/m2) and 2 Gy total body irradiation. Marrow (n = 18) or granulocyte colony-stimulating factor (G-CSF)-stimulated peripheral blood mononuclear cells (G-PBMCs; n = 71) were transplanted from unrelated donors matched for human leukocyte antigen A (HLA-A), -B, -C antigens and -DRB1 and -DQB1 alleles. Postgrafting immunosuppression included mycophenolate mofetil and cyclosporine. Donor T-cell chimerism was higher for G-PBMCs compared with marrow recipients. Durable engraftment was observed in 85% of G-PBMCs and 56% of marrow recipients. Cumulative probabilities of grade II, III, and IV acute graft-versus-host disease (GVHD) were 42%, 8%, and 2%, respectively. Nonrelapse mortality at day 100 and at 1 year was 11% and 16%, respectively. One-year overall survivals and progression-free survivals were 52% and 38%, respectively. G-PBMC recipients had improved survival (57% vs 33%) and progression-free survival (44% vs 17%) compared with marrow recipients. HLA-matched unrelated donor HCT after nonmyeloablative conditioning is feasible in patients ineligible for conventional HCT. G-PBMCs conferred higher donor T-cell chimerism, greater durable engraftment, and better progression-free and overall survivals compared with marrow.