The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n = 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.