Background/aim: Mutations in genes encoding the ATP-binding cassette (ABC)-transporters ABCG5 and ABCG8 underlie sitosterolemia, which is characterized by elevated plasma levels of phytosterols due to increased intestinal absorption and impaired biliary secretion of sterols. The aim of our study was to correlate the expression levels of Abcg5 and Abcg8 to biliary cholesterol secretion in various (genetically-modified) mouse models.
Methods: Bile was collected from genetically-modified mice fed a chow diet, or from mice fed either a chow diet, or chow supplemented with either 1% diosgenin, 0.1% simvastatin, or a synthetic liver X receptor agonist, for determination of biliary lipids. Livers and small intestines were harvested and expression levels of Abcg5, Abcg8 and Abcb4 were determined by real-time polymerase chain reaction.
Results: Intestinal expression of Abcg5 and Abcg8 did not show much variation between the various models. In contrast, a linear correlation between hepatic expression levels of Abcg5 and Abcg8 and biliary cholesterol secretion rates was found. This relation was independent of Abcb4-mediated phospholipid secretion. However, in diosgenin-fed mice showing cholesterol hypersecretion, hepatic Abcg5 and Abcg8 expression levels remained unchanged.
Conclusions: Our results strongly support a role for Abcg5 and Abcg8 in regulation of biliary cholesterol secretion, but also indicate the existence of a largely independent route of cholesterol secretion.