Gene amplification is an important mechanism of oncogene activation in various human cancers, including ovarian carcinomas (OvCas). We used restriction landmark genomic scanning (RLGS) to detect amplified DNA fragments in the genomes of 47 primary OvCas. Visual analysis of the RLGS gel images revealed several OvCa samples with spots of greater intensity than corresponding spots from normal tissues, indicating possible DNA amplification in specific tumors. Two primary tumors (E1 and S12) shared four high-intensity spots. A recently developed informatics tool termed Virtual Genome Scans was used to compare the RLGS patterns in these tumors with patterns predicted from the human genome sequence. Virtual Genome Scans determined that three of the four fragments localized to chromosome 1p34-35, a region containing the proto-oncogene L-MYC. Sixty-eight primary OvCas, including 40 analyzed by RLGS, were screened by quantitative polymerase chain reaction (PCR) for possible amplification of L-MYC. Ten tumors with increased L-MYC copy number were identified, including tumor E1, which showed an approximately 24-fold increase in copy number compared to normal DNA. Southern analysis of several tumors confirmed the quantitative PCR results. Using sequence tagged site (STS) markers flanking L-MYC, increased DNA copy number in tumor E1 was found to span the region flanking L-MYC between D1S432 and D1S463 ( approximately 3.1 Mb). Other tumors showed amplification only at the L-MYC locus. Using oligonucleotide microarrays, L-MYC was found to be more frequently overexpressed in OvCas than either c-MYC or N-MYC relative to ovarian surface epithelium. Quantitative reverse transcriptase-PCR analysis confirmed elevated L-MYC expression in a substantial fraction of OvCas, including nine of nine tumors with increased L-MYC copy number. The data implicate L-MYC gene amplification and/or overexpression in human OvCa pathogenesis.