AKT2 inhibition of cisplatin-induced JNK/p38 and Bax activation by phosphorylation of ASK1: implication of AKT2 in chemoresistance

J Biol Chem. 2003 Jun 27;278(26):23432-40. doi: 10.1074/jbc.M302674200. Epub 2003 Apr 15.

Abstract

Cisplatin and its analogues have been widely used for treatment of human cancer. However, most patients eventually develop resistance to treatment through a mechanism that remains obscure. Previously, we found that AKT2 is frequently overexpressed and/or activated in human ovarian and breast cancers. Here we demonstrate that constitutively active AKT2 renders cisplatin-sensitive A2780S ovarian cancer cells resistant to cisplatin, whereas phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 sensitizes A2780S and cisplatin-resistant A2780CP cells to cisplatin-induced apoptosis through regulation of the ASK1/JNK/p38 pathway. AKT2 interacts with and phosphorylates ASK1 at Ser-83 resulting in inhibition of its kinase activity. Accordingly, activated AKT2 blocked signaling down-stream of ASK1, including activation of JNK and p38 and the conversion of Bax to its active conformation. Expression of nonphosphorylatable ASK1-S83A overrode the AKT2-inhibited JNK/p38 activity and Bax conformational changes, whereas phosphomimic ASK1-S83D inhibited the effects of cisplatin on JNK/p38 and Bax. Cisplatin-induced Bax conformation change was inhibited by inhibitors or dominant negative forms of JNK and p38. In conclusion, our data indicate that AKT2 inhibits cisplatin-induced JNK/p38 and Bax activation through phosphorylation of ASK1 and thus, plays an important role in chemoresistance. Further, regulation of the ASK1/JNK/p38/Bax pathway by AKT2 provides a new mechanism contributing to its antiapoptotic effects.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Retracted Publication

MeSH terms

  • Apoptosis / drug effects
  • Cisplatin / pharmacology*
  • Drug Resistance, Neoplasm*
  • Humans
  • JNK Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase Kinase 5
  • MAP Kinase Kinase Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / drug effects
  • Mitogen-Activated Protein Kinases / metabolism
  • Phosphorylation / drug effects
  • Protein Conformation
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / chemistry
  • Proto-Oncogene Proteins / drug effects
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins / physiology*
  • Proto-Oncogene Proteins c-akt
  • Proto-Oncogene Proteins c-bcl-2*
  • Signal Transduction / drug effects
  • Tumor Cells, Cultured
  • bcl-2-Associated X Protein
  • p38 Mitogen-Activated Protein Kinases

Substances

  • BAX protein, human
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • bcl-2-Associated X Protein
  • AKT2 protein, human
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinases
  • p38 Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase Kinase 5
  • MAP Kinase Kinase Kinases
  • MAP3K5 protein, human
  • Cisplatin