Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II

J Clin Invest. 2003 Mar;111(5):617-25. doi: 10.1172/JCI16326.

Abstract

beta(1)-adrenergic receptor (beta(1)AR) stimulation activates the classic cAMP/protein kinase A (PKA) pathway to regulate vital cellular processes from the change of gene expression to the control of metabolism, muscle contraction, and cell apoptosis. Here we show that sustained beta(1)AR stimulation promotes cardiac myocyte apoptosis by activation of Ca(2+)/calmodulin kinase II (CaMKII), independently of PKA signaling. beta(1)AR-induced apoptosis is resistant to inhibition of PKA by a specific peptide inhibitor, PKI14-22, or an inactive cAMP analogue, Rp-8-CPT-cAMPS. In contrast, the beta(1)AR proapoptotic effect is associated with non-PKA-dependent increases in intracellular Ca(2+) and CaMKII activity. Blocking the L-type Ca(2+) channel, buffering intracellular Ca(2+), or inhibiting CaMKII activity fully protects cardiac myocytes against beta(1)AR-induced apoptosis, and overexpressing a cardiac CaMKII isoform, CaMKII-deltaC, markedly exaggerates the beta(1)AR apoptotic effect. These findings indicate that CaMKII constitutes a novel PKA-independent linkage of beta(1)AR stimulation to cardiomyocyte apoptosis that has been implicated in the overall process of chronic heart failure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis*
  • Calcium / physiology*
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases / physiology*
  • Cyclic AMP / physiology
  • Cyclic AMP-Dependent Protein Kinases / physiology*
  • Enzyme Activation
  • GTP-Binding Protein alpha Subunits, Gi-Go / physiology
  • Heart Failure / etiology
  • Heterotrimeric GTP-Binding Proteins / physiology
  • Male
  • Mice
  • Mice, Knockout
  • Myocardium / pathology*
  • Receptors, Adrenergic, beta-1 / physiology*

Substances

  • Receptors, Adrenergic, beta-1
  • Cyclic AMP
  • Cyclic AMP-Dependent Protein Kinases
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Calcium-Calmodulin-Dependent Protein Kinases
  • GTP-Binding Protein alpha Subunits, Gi-Go
  • Heterotrimeric GTP-Binding Proteins
  • Calcium