Conotoxins comprise a diverse group of disulfide-rich peptides found in venoms of predatory Conus species. The native conformation of these peptides is marginally stable in comparison with alternative conformations, often resulting in low folding yields. The oxidative folding of hydrophobic delta-conotoxins was found to produce less than 1% of the native peptide [Bulaj, G. et al. (2001) Biochemistry 40, 13201]. In order to identify factors that might improve folding yields, we screened a number of additives including water-soluble polymers, detergents and osmolytes for their ability to increase steady-state accumulation of the native delta-conotoxin PVIA. The presence of a non-ionic detergent Tween and low temperature appeared to be the most effective factors in improving the oxidative folding. The detergent was also effective in promoting folding of other hydrophobic delta-conotoxins. Based on our findings, we discuss a possible mechanism for detergent-assisted folding and the general applicability of this mechanism to facilitating the proper folding of hydrophobic, cysteine-rich peptides.