In situ hybridization was used to evaluate whether long-term moderate locomotor exercise, which up-regulates BDNF and TrkB levels in the spinal gray matter of the adult rat, similarly influences the expression of the cell adhesion molecules N-CAM and L1. Exercise doubled the level of N-CAM mRNA hybridization signal in the lumbar spinal gray. The increase in L1 mRNA was less consistent. N-CAM mRNA levels slightly increased in the white matter. BDNF mRNA levels also increased in cells of the ventral horn and the white matter due to the exercise. These results suggest that exercise-induced rearrangements of the spinal network involve N-CAM, L1 and BDNF, crucial in different aspects of synaptic plasticity and synapse formation.