Efforts to develop a vaccine against human immunodeficiency virus type 1 (HIV-1) are complicated by resistance of virus to neutralization. The neutralization resistance phenotype of HIV-1 has been linked to high infectivity. We studied the mechanisms determining this phenotype using clones of the T-cell-line-adapted (TCLA) MN strain (MN-TCLA) and the neutralization-resistant, primary MN strain (MN-P). Mutations in the amino- and carboxy-terminal halves of gp120 and the carboxy terminus of gp41 contributed to the neutralization resistance, high-infectivity phenotype but depended upon sequences in the leucine zipper (LZ) domain of gp41. Among 23 clones constructed to map the contributing mutations, there was a very strong correlation between infectivity and neutralization resistance (R(2) = 0.81; P < 0.0001). Mutations that distinguished the gp120s of MN-P and MN-TCLA clones were clustered in or near the CD4 and coreceptor binding sites and in regions distant from those binding sites. To test the hypothesis that some of these distant mutations may interact with gp41, we determined which of them contributed to high infectivity and whether those mutations modulated gp120-gp41 association in the context of MN-P LZ sequences. In one clone, six mutations in the amino terminus of gp120, at least four of which clustered closely on the inner domain, modulated infectivity. This clone had a gp120-gp41 association phenotype like MN-P: in comparison to MN-TCLA, spontaneous dissociation was low, and dissociation induced by soluble CD4 binding was high. These results identify a region of the gp120 inner domain that may be a binding site for gp41. Our studies clarify mechanisms of primary virus neutralization resistance.