Background: Development of proximal and distal colorectal cancers involve partly different mechanisms associated with the microsatellite instability (MSI) and the chromosomal instability (CIN) pathways. Colorectal cancers in patients under 50 years of age represent about 5% of the total number of tumors and have been associated with an increased frequency of MSI tumors. However, MSI and CIN may play different roles in the development of colon cancer and rectal cancer, and we have specifically investigated their contribution to the development of rectal cancer at young age.
Methods: Thirty rectal cancers diagnosed before the age of 50 were characterized for DNA-ploidy, MSI, mutations of KRAS and CTNNB1 and immunohistochemical expression of p53, beta-catenin and of the mismatch repair (MMR) proteins MLH1 and MSH2.
Results: DNA aneuploidy was detected in 21/30 tumors, KRAS mutations in 6 tumors, no mutations of CTNNB1 were detected but immunohistochemical staining for beta-catenin showed nuclear staining in 6 tumors, and immunohistochemical expression of p53 was detected in 18 tumors. MSI was detected in 3/30 tumors, all of which showed and immunohistochemical loss of staining for the MMR protein MSH2, which strongly indicates a phenotype associated with hereditary nonpolyposis colorectal cancer (HNPCC).
Conclusions: MSI occurs only in a small fraction of the tumors from young patients with rectal cancer, but when present it strongly indicates an underlying HNPCC-causing mutation, and other mechanisms than HNPCC thus cause rectal cancer in the majority of young patients.