Friedreich ataxia (FRDA) is caused by a GAA triplet expansion in the first intron of the X25 gene. The X25 gene encodes a 210-amino acid protein, frataxin (A isoform). Here, we report the identification of a new transcript of the X25 gene generated by alternative splicing by the use of a second donor splice site in the intron 4. Full-length cDNA transcript sequence revealed an insertion of 8 bp between 4 and 5a exon sequence. This event leads to a frameshift in the mRNA reading frame and introduces a new stop codon at position 589. Therefore, this X25 transcript variant may encode a 196-amino acid protein, the A1 isoform, that structurally differs from the main A isoform of 210 amino acids after residue 160. In all human tissues analyzed, reverse transcription-polymerase chain reaction experiments demonstrated that the A1 isoform was expressed at low levels compared with the predominant A isoform. No difference in A and A1 isoform expression rate was detected between FRDA patients and normal controls. We did not find an A1 like splice variant in rodents.