MHC class I tetramers containing peptide epitopes are sensitive tools for detecting antigen-specific CD8(+) T-cell responses. We demonstrate here that binding of HLA-A2 tetramers to CD8(+) T cells specific for the melanoma-associated antigen Melan-A/MART-1 can be fine-tuned by altering either the bound peptide epitope or residues in the alpha 3 domain of HLA-A2, which is important for CD8 binding. Antigen-specific T cells expressing high levels of CD8 could be detected using HLA-A2 tetramers containing the peptide AAGIGILTV, an epitope which is naturally processed and presented from Melan-A/MART-1. In contrast, low CD8-expressing, antigen-specific T cells could be detected efficiently only by using a mutated HLA-A2 tetramer with an altered CD8 binding site or, less efficiently, using the wild-type HLA-A2 tetramer loaded with the peptide analogue ELAGIGILTV, which is superior in stimulating antigen-specific T-cell responses. Our results suggest ways to optimize the identification and expansion of antigen-specific T cells with different requirements for the costimulatory CD8 molecule in facilitating T-cell receptor binding to peptide variants.
Copyright 2002 Wiley-Liss, Inc.