Background: The new anticonvulsants, gabapentin and pregabalin, are effective in the treatment of neuropathic pain. The sites and mechanisms of their analgesic action are not fully known. The authors have previously demonstrated that systemic gabapentin suppresses ectopic afferent discharges recorded from injured sciatic nerves in rats. In the current study, they further examined the stereospecific effect of pregabalin on neuropathic pain and afferent ectopic discharges in a rodent model of neuropathic pain.
Methods: Tactile allodynia and thermal hyperalgesia were induced by partial ligation of the left sciatic nerve in rats. Single-unit activity of afferent ectopic discharges was recorded from the sciatic nerve proximal to the site of ligation.
Results: Intravenous injection of 10-30 mg/kg pregabalin dose-dependently attenuated tactile allodynia (n = 10) and thermal hyperalgesia (n = 8). The stereoisomer of pregabalin, R-3-isobutylgaba, had no analgesic effect in this dose range. Furthermore, intravenous injection of pregabalin, but not R-3-isobutylgaba, significantly inhibited the ectopic discharges from injured afferents in a dose-dependent manner (from 20.8 +/- 2.4 impulses/s during control to 2.3 +/- 0.7 impulses/s after treatment with 30 mg/kg pregabalin, n = 15). Pregabalin did not affect the conduction velocity of afferent fibers and the response of normal afferent nerves to mechanical stimulation.
Conclusions: These data strongly suggest that the analgesic effect of pregabalin on neuropathic pain is likely mediated, at least in part, by its peripheral inhibitory action on the impulse generation of ectopic discharges caused by nerve injury.