The amino acid change K65R in human immunodeficiency virus type 1-reverse transcriptase (RT) confers viral resistance to various 2',3'-dideoxynucleoside drugs in vivo. Using pre-steady state kinetic methods, we found that K65R-reverse transcriptase is 3.2-14-fold resistant to 2',3'-dideoxynucleotides in vitro relative to wild-type reverse transcriptase, in agreement with resistance levels observed in vivo. A decreased catalytic rate constant k(pol) mostly accounts for the lower incorporation efficiency observed for 2',3'-dideoxynucleotides. Examination of the crystal structure of the RT.DNA.dNTP complex suggested that both the charge at position 65 and the 3'-OH of the incoming nucleotide act in synergy during the creation of the phosphodiester bond, resulting in a more pronounced decreased catalytic rate constant for 2',3'-dideoxynucleotides than for dNTPs. This type of intramolecular activation of the leaving phosphate by the 3'-OH group appears to be conserved in several nucleotide phosphotransferases. These data were used to design dideoxynucleotide analogues targeting K65R RT specifically. alpha-Boranophosphate ddATP was found to be a 2-fold better substrate than dATP and inhibited DNA synthesis by K65R RT 153-fold better than ddATP. This complete suppression of drug resistance at the nucleotide level could serve for other reverse transcriptases for which drug resistance is achieved at the catalytic step.