Using density functional theory, we investigate the structure of mixed (3)He(N3)-(4)He(N4) droplets with an embedded impurity (Xe atom or HCN molecule) which pins a quantized vortex line. We find that the dopant+vortex+(4)He(N4) complex, which in a previous work [F. Dalfovo et al., Phys. Rev. Lett. 85, 1028 (2000)] was found to be energetically stable below a critical size N(cr), is robust against the addition of 3He. While 3He atoms are distributed along the vortex line and on the surface of the 4He drop, the impurity is mostly coated by 4He atoms. Results for N4 = 500 and a number of 3He atoms ranging from 0 to 100 are presented, and the binding energy of the dopant to the vortex line is determined.