Inefficient gene transfer has limited the success of gene therapy in the hematopoietic system. Here we develop a novel chimeric adenovirus (Ad) vector containing Ad serotype 11 fiber-modified capsids and E1/E3 deleted viral genomes (Ad5/11) or genomes devoid of all viral genes (DeltaAd5/11). The capsid-modified vectors transduced human hematopoietic cells more efficiently than the unmodified Ad5-based vector. The absence of viral genes from the DeltaAd5/11 vector allowed for transduction without the associated toxicity seen with the first-generation E1/E3 deleted vector. Chimeric vectors were used for transient expression of the ecotropic retrovirus receptor (ecoR) in Mo7e cells (a CD34-positive, c-Kit-positive, growth-factor-dependent human cell line) as a model for human hematopoietic progenitor cells. Expression of ecoR conferred susceptibility to subsequent retroviral transduction. The DeltaAd5/11 vector used to express ecoR allowed for expansion of retrovirally transduced cells, whereas transduction with the first-generation Ad5/11 vector resulted in cytotoxicity and, over time, loss of cells expressing the retrovirus-vector-derived transgene.