Lymphocyte activation is known to be associated with the induction of genes implicated in cytokine signaling and cellular proliferation. High-density microarrays offer the means to monitor global cellular expression profiles, temporal relationships between classes of transcripts, and alterations associated with human disease or immunosuppression. We sought to determine whether microarray analysis would accurately reflect the normal pattern of gene expression following human T cell activation, and whether the complex expression patterns identified could be analyzed to produce a functional profile of lymphocyte activation. We examined a time course of sequential expression profiles for 6,800 cellular transcripts in human lymphocytes activated with concanavalin A. Expression patterns were grouped using clustering analysis and validated using Northern blotting. Genes known to be induced following T cell activation were accurately identified, and the qualitative patterns of gene expression were well correlated between Northern and microarray analyses. Quantitative differences in gene expression levels were less well correlated between these two techniques. Expression profile analysis revealed the sequential induction of groups of functionally similar genes, whose temporal coregulation underscores known cellular events during T cell activation. This functional "fingerprint" of lymphocyte activation may prove useful for comparisons of lymphocyte responses under experimental conditions and in disease states.