Rationale and objectives: To determine the clinical dose of gadoteridol (ProHance, Bracco-Byk Gulden) to use for the assessment of blood-brain barrier breakdown on low-field magnetic resonance (MR) scanners that corresponds to a standard dose of gadoteridol on high-field MR scanners.
Methods: This prospective study was carried out at four centers. A total of 138 patients with suspected or known brain diseases underwent a routine head scan comprising precontrast T2-weighted turbo spin-echo and T1-weighted spin-echo sequences on a 1.5-T MR scanner. After administration of a standard dose of 0.1 mmol/kg gadoteridol, the T1-weighted scan was repeated after a delay of 15 to 20 minutes. For continuing the examination on a 0.2-T MR scanner (Magnetom OPEN, Siemens), a standard-dose T1 spin-echo sequence was started within 30 to 50 minutes of the first injection. Then two additional T1-weighted low-field sequences were each started 5 minutes after two additional doses of 0.1 mmol/kg gadoteridol. Eighty patients with enhancing lesions underwent an intraindividual comparison. Evaluation of the overall numbers of lesions detected and of lesion size and character was performed on-site as well as off-site by two independent readers.
Results: The single-dose, low-field sequence detected significantly fewer enhancing lesions (80/95 lesions; P < 0.05), particularly metastases and infarctions, than did the standard-dose, high-field sequence. No statistically relevant differences (reader 1: P = 1; reader 2: P = 0.8) were found between the double- and triple-dose, low-field sequences and the standard-dose, high-field sequence. Primary brain tumors were detected by all postcontrast sequences irrespective of the dose.
Conclusions: At low field, the clinically equivalent dose to 0.1 mmol/kg gadoteridol at high field is 0.2 mmol/kg. A dose of 0.1 mmol/kg gadoteridol is less effective and cannot be recommended for use on extremely low-field scanners.