The DAZ genes are candidate fertility factors that lie within the human Y chromosome's AZFc region, whose deletion is a common cause of spermatogenic failure. The number of DAZ genes has been difficult to determine, in part because the nucleotide sequences of the DAZ genes are nearly identical. Here, fluorescence in situ hybridization and characterization of BAC clones revealed four full-length DAZ genes on the human Y chromosome. They exist in two clusters, each comprising an inverted pair of DAZ genes (3' <-- 5'::5' --> 3'). Analysis of genomic sequences and testicular transcripts suggested that three or four DAZ genes are translated. Each gene contains at least seven tandem copies of a previously described, 2.4-kb repeat unit that encodes 24 amino acids. In addition, two DAZ genes contain tandem copies of a 10.8-kb repeat unit that encodes the RNA-binding domain, which appears to be multimerized in some DAZ proteins. Combining our present results with previous studies, we can reconstruct several steps in the evolution of the DAZ genes on the Y chromosome. In the ancestral Y-chromosomal DAZ gene, amplification of both intragenic repeats began before the human and cynomolgus (Old World) monkey lineages diverged. During subsequent evolution, an inverted duplication of this modified gene occurred. Finally, the resulting two-gene cluster was duplicated, generating the two-cluster/four-gene arrangement found on modern human Y chromosomes.
Copyright 2000 Academic Press.