When viewing a stationary object, we unconsciously make small, involuntary eye movements or 'microsaccades'. If displacements of the retinal image are prevented, the image quickly fades from perception. To understand how microsaccades sustain perception, we studied their relationship to the firing of cells in primary visual cortex (V1). We tracked eye movements and recorded from V1 cells as macaque monkeys fixated. When an optimally oriented line was centered over a cell's receptive field, activity increased after microsaccades. Moreover, microsaccades were better correlated with bursts of spikes than with either single spikes or instantaneous firing rate. These findings may help explain maintenance of perception during normal visual fixation.