The cysteine protease caspase-3 may be involved in the mechanism of cell death following seizures. Using a rat model of focally evoked limbic epilepsy with continuous electroencephalography monitoring, we investigated seizure-induced changes in caspase-3 protein expression and processing, enzyme activity, and the in vivo effect of caspase-3 inhibition. Seizures were induced by intraamygdaloid injection of kainic acid (0.1 microg) and were terminated after 45 min by diazepam (30 mg/kg) administration. Animals were killed 0-72 h following diazepam administration. Levels of the 32-kDa proenzyme form of caspase-3 were unaffected by seizures. Levels of the 17-kDa cleaved (active) fragment of caspase-3 were almost undetectable in control brain, but were increased significantly at 4 and 24 h within ipsilateral hippocampus and cortex in seizure animals. Caspase-3-like protease activity was increased within the ipsilateral hippocampus at 8 and 24 h following seizures. Caspase-3 immunoreactivity was increased within the vulnerable ipsilateral CA3/CA4 subfield at 24 and 72 h following seizures and was associated predominantly, but not exclusively, with neurons exhibiting DNA fragmentation. The putatively selective caspase-3 inhibitor N-benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethyl ketone significantly improved neuronal survival bilaterally within the hippocampal CA3/CA4 subfields following seizures. Collectively, these data suggest that caspase-3 may play a significant role in the mechanism by which neurons die following seizures.