Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes

Mol Pharmacol. 2000 Jan;57(1):188-97.

Abstract

We hypothesized that the drug efflux protein P-glycoprotein (Pgp), the product of the multidrug resistance gene MDR1, might influence hepatic expression of CYP3A or other cytochromes P-450 (P-450s) because Pgp can transport endogenous regulators of these cytochromes. We began with variants of a CF-1 mouse strain containing a defective mdr1a gene that is inherited in a Mendelian fashion. The amount of CYP3A protein in liver was inversely related to the gene dose of the normal mdr1a allele in these mice. mdr1a knockout mice of either mixed (FVB x 129/Ola) or pure FVB genetic background and housed in Amsterdam display an increased expression of CYP2B and CYP3A proteins. However, because mdr1a ablation causes a compensatory increase in hepatic mdr1b (which can efflux intracellular glucocorticoids), we reasoned that mdr1b might mask the overall effect of mdr1a absence on P-450 gene expression. Targeted inactivation of the mdr1b gene increased P-450 expression, but the effect was modest compared with mdr1a ablation. Mice nullizygous for both mdr1a and mdr1b-type Pgps and kept in Amsterdam had dramatically increased levels of CYP3A protein as well as other P-450s examined and of the electron donor P-450 reductase. Consistent with the protein results, CYP3A catalytic activity measured as midazolam 1'- and 4-hydroxylation in liver microsomes from these knockout mice revealed a rank order of activities with mdr1a/1b > mdr1a > mdr1b > (+/+) mice. In contrast to results in mice housed in Amsterdam, in the genetically identical mdr1a or mdr1a/1b (-/-) male mice housed in the United States, hepatic P-450 expression was unaffected by mdr1 genotype or actually showed a slight decrease in mdr1a (-/-) mice. These results provide a revealing picture of mdr1-type Pgp as an upstream regulator of hepatic P-450 expression, and demonstrate that these pharmacologically relevant phenotypes in knockout mice depend not only on the genetic make-up of the mice but also on the environment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / deficiency
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Animals
  • Aryl Hydrocarbon Hydroxylases*
  • Cytochrome P-450 CYP3A
  • Cytochrome P-450 Enzyme System / biosynthesis*
  • Cytochrome P-450 Enzyme System / genetics
  • Female
  • Gene Expression Regulation, Enzymologic
  • Liver / enzymology*
  • Male
  • Mice
  • Mice, Knockout
  • NADPH-Ferrihemoprotein Reductase / biosynthesis
  • NADPH-Ferrihemoprotein Reductase / genetics
  • Netherlands
  • Oxidoreductases, N-Demethylating / biosynthesis
  • Oxidoreductases, N-Demethylating / genetics
  • United States

Substances

  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Cytochrome P-450 Enzyme System
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P-450 CYP3A
  • Oxidoreductases, N-Demethylating
  • NADPH-Ferrihemoprotein Reductase