Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences

Mol Phylogenet Evol. 1999 Nov;13(2):348-59. doi: 10.1006/mpev.1999.0653.

Abstract

DNA sequence data of the nuclear-encoded gamma1-gamma2-globin duplication region were used to examine the phylogenetic relationships of 16 cercopithecid (Old World monkey) species representing 12 extant genera. Morphology- and molecular-based hypotheses of Old World monkey branching patterns are generally congruent, except for generic relationships within the subtribe Papionina. The cercopithecids divide into colobines (leaf-eating monkeys) and cercopithecines (cheek-pouched monkeys). The colobines examined by the DNA data divide into an Asian clade (Nasalis, proboscis monkeys; Trachypithecus, langurs) and an African clade (Colobus, colobus monkeys). The cercopithecines divide into tribes Cercopithecini (Erythrocebus, patas monkey; Chlorocebus, green monkeys; Cercopithecus, guenons) and Papionini. Papionins divide into subtribes Macacina (Macaca, macaques) and Papionina (Papio, hamadryas baboons; Mandrillus, drills and mandrills; Theropithecus, gelada baboons; Lophocebus, arboreal mangabeys; Cercocebus, terrestrial mangabeys). In a morphologically based classification, Mandrillus is a subgenus of Papio, whereas Lophocebus is a subgenus of Cercocebus. In contrast, the molecular evidence treats Mandrillus as a subgenus of Cercocebus, and treats both Theropithecus and Lophocebus as subgenera of Papio. Local molecular clock divergence time estimates were used as a yardstick in a "rank equals age" system to propose a reduction in taxonomic rank for most clades within Cercopithecidae.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cercopithecidae / classification
  • Cercopithecidae / genetics*
  • DNA / chemistry
  • DNA / genetics*
  • Evolution, Molecular
  • Globins / genetics*
  • Phylogeny*
  • Sequence Analysis, DNA
  • Statistics as Topic
  • Time Factors

Substances

  • Globins
  • DNA