Background: Thymic irradiation (TI) or repeated administration of T cell-depleting monoclonal antibodies (TCD mAbs) is required in a previously described non-myeloablative regimen allowing allogeneic marrow engraftment with stable mixed chimerism and tolerance. As both treatments might be associated with toxicity in the clinical setting, we evaluated whether T-cell costimulatory blockade could be used to replace them.
Methods: C57BL/6 mice received depleting anti-CD4 and anti-CD8 mAbs on day -5, 3 Gy whole body irradiation (day 0), and 15x10(6) fully MHC-mismatched, B10.A bone marrow cells. In addition, hosts were injected with an anti-CD154 mAb (day 0) and/or CTLA4Ig (day +2). Chimerism in peripheral blood was followed by flow cytometric (FACS) analysis, and tolerance was assessed by skin grafting, and also by mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. The frequency of certain Vbeta families was determined by FACS to assess deletion of donor-reactive T cells.
Results: Chimerism was transient and tolerance was not present in animals receiving TCD mAbs on day -5 without costimulatory blockade. The addition of anti-CD154 and CTLA4Ig, alone or in combination, reliably permitted induction of high levels of stable (>6 months) multi-lineage chimerism, with specific tolerance to skin grafts and donor antigens by MLR and CML assays. Long-term chimeras showed deletion of donor-reactive CD4+ peripheral blood lymphocytes, splenocytes, and mature thymocytes. Administration of TCD mAbs only 1 day before bone marrow transplantation plus anti-CD154 also allowed induction of permanent chimerism and tolerance.
Conclusions: One injection of anti-CD154 or CTLA4Ig overcomes the need for TI or prolonged host TCD in a preclinical model for the induction of mixed chimerism and deletional tolerance and thus further decreases the toxicity of this protocol. Achievement of tolerance with conditioning given over 24 hr suggests applicability to cadaveric organ transplantation.