The three-dimensional structure of tRNA is organized into two domains-the acceptor-TPsiC minihelix with the amino acid attachment site and a second, anticodon-containing, stem-loop domain. Aminoacyl-tRNA synthetases have a structural organization that roughly recapitulates the two-domain organization of tRNAs-an older primary domain that contains the catalytic center and interacts with the minihelix and a secondary, more recent, domain that makes contacts with the anticodon-containing arm. The latter contacts typically are essential for enhancement of the catalytic constant k(cat) through domain-domain communication. Methanococcus jannaschii tyrosyl-tRNA synthetase is a miniature synthetase with a tiny secondary domain suggestive of an early synthetase evolving from a one-domain to a two-domain structure. Here we demonstrate functional interactions with the anticodon-containing arm of tRNA that involve the miniaturized secondary domain. These interactions appear not to include direct contacts with the anticodon triplet but nonetheless lead to domain-domain communication. Thus, interdomain communication may have been established early in the evolution from one-domain to two-domain structures.