Nitric oxide-mediated spinal disinhibition contributes to the sensitization of primate spinothalamic tract neurons

J Neurophysiol. 1999 Mar;81(3):1086-94. doi: 10.1152/jn.1999.81.3.1086.

Abstract

This study concentrated on whether an increase in spinal nitric oxide (NO) diminishes inhibition of spinothalamic tract (STT) cells induced by activating the periaqueductal gray (PAG) or spinal glycinergic and GABAergic receptors, thus contributing to the sensitization of STT neurons. A reduction in inhibition of the responses to cutaneous mechanical stimuli induced by PAG stimulation was seen in wide dynamic range (WDR) STT cells located in the deep layers of the dorsal horn when these neurons were sensitized during administration of a NO donor, 3-morpholinosydnonimine (SIN-1), into the dorsal horn by microdialysis. In contrast, PAG-induced inhibition of the responses of high-threshold (HT) and superficial WDR STT cells was not significantly changed by spinal infusion of SIN-1. A reduction in PAG inhibition when STT cells were sensitized after intradermal injection of capsaicin could be nearly completely blocked by pretreatment of the dorsal horn with a NO synthase inhibitor, 7-nitroindazole. Moreover, spinal inhibition of nociceptive activity of deep WDR STT neurons elicited by iontophoretic release of glycine and GABA agonists was attenuated by administration of SIN-1. This change paralleled the change in PAG-induced inhibition. However, the inhibition of HT and superficial WDR cells induced by glycine and GABA release did not show a significant change when SIN-1 was administered spinally. Combined with our recent results, these data show that the effectiveness of spinal inhibition can be reduced by the NO/cGMP pathway. Thus disinhibition may constitute one mechanism underlying central sensitization.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Capsaicin / pharmacology
  • Electric Stimulation
  • Enzyme Inhibitors / pharmacology
  • Injections, Subcutaneous
  • Iontophoresis
  • Macaca fascicularis
  • Molsidomine / analogs & derivatives
  • Molsidomine / pharmacology
  • Neural Inhibition*
  • Nitric Oxide Donors / pharmacology
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Periaqueductal Gray / drug effects
  • Periaqueductal Gray / physiology
  • Spinal Cord / physiology*
  • Spinothalamic Tracts / cytology
  • Spinothalamic Tracts / physiology*
  • Stress, Mechanical

Substances

  • Enzyme Inhibitors
  • Nitric Oxide Donors
  • linsidomine
  • Molsidomine
  • Nitric Oxide Synthase
  • Capsaicin